Rothbury First School

June 2022
Review Date June 2023

Rothbury First School - Progression in Calculations

Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar.		$\begin{aligned} & 4+3=7 \\ & 10=6+4 \end{aligned}$ Use the part-part whole diagram as shown to move into the abstract.
Starting at the bigger number and counting on.	Start with the larger number on the bead string then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

Regrouping to make 10	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	$3+9=$ Use pictures or a number line. Regroup or partition the smaller number to make 10. $9+5=14$	$7+4=11$ If I am at seven, how many more do I need to make 10 . How many more do I add on now?
Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7 Following on from making 10, make 10 with 2 of the digits (if possible) then add the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} \frac{4+7+6}{4}+ & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

Column method - no regrouping	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	Calculations $\begin{array}{r} 21+42= \\ 21 \\ +\underline{42} \end{array}$
Column method regrouping	Make both numbers on a place value grid. Add up the units and exchange 10 ones for one 10.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions. Children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding.	Start by partitioning the numbers before moving on to clearly show the exchange below the addition. $\begin{aligned} & 20+5 \\ & 40+8 \\ & \hline 60+13=73 \end{aligned}$

Subtraction

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-2=4$	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{aligned} & 18-3=15 \\ & 8-2=6 \end{aligned}$

Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts, what is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	5 10 Move to using numbers within the part whole model.

Make 10	$14-9=$ Make 14 on the ten frame. Take away the four first to make 10 and then take away one more so you have taken away 5 . You are left with the answer of 9.	Start at 13 . Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the previous 10 ? How many do we have left to take off?

	Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens. Now I can take away eight tens and complete my subtraction Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.	\|	

Multiplication

Objective and Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number. double 4 is 8 $4 \times 2=8$	Draw pictures to show how to double a number. Double 4 is 8	Partition a number and then double each part before recombining it back together.

Repeated addition	$3+3+3$ Use different objects to add equal groups.		Write addition sentences to describe objects and pictures.

| Arrays -
 showing
 commutative
 multiplication | Create arrays using counters/cubes to show
 multiplication sequences. |
| :--- | :--- | | Draw arrays in different rotations to find |
| :--- |
| commutative multiplication sequences. | | Use an array to write multiplication |
| :--- |
| sentences and enforce repeated |
| addition. |

Column multiplication	Children can continue to be supported by place value counters at this stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods. \square 59 ? $\begin{aligned} & 8 \times 59 \\ & =8 \times 60=8 \\ & 8 \times 6=48 \\ & 8 \times 60=480 \\ & 480-8=472 \end{aligned}$ \square $\xrightarrow{10 \text { lit }}$ $\begin{aligned} & 4+4+8+8+16 \\ & 5 \times 8=40 \text { jugs } \end{aligned}$	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer: This moves to the more compact method: $\begin{array}{lll}2 & 3 & 1\end{array}$ 1342

Division

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups.	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities.	Share 9 buns between three people. $9 \div 3=3$

Division within arrays.	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rr}\text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15\end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

| Division |
| :--- | :--- | :--- | :--- | :--- | :--- |
| with a |
| remainder. | | $14 \div 3=$ |
| :--- |
| Divide objects between groups and see how |
| much is left over. | | Complete written divisions and |
| :--- |
| number line then see how many more |
| sou need to jump to find the remainder. |

Short division	 Use place value counters to divide using the bus stop method alongside. $42 \div 3=$ Start with the biggest place value. We are dividing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over.	Pupils can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder. Finally move into decimal places to divide the total accurately.

| | We exchange this ten for 10 ones and then
 share the ones equally among the groups. | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

